188 lines
5.1 KiB
PHP
188 lines
5.1 KiB
PHP
<?php
|
|
/*
|
|
* Copyright 2007 ZXing authors
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
namespace Zxing\Common;
|
|
|
|
/**
|
|
* <p>This class implements a perspective transform in two dimensions. Given four source and four
|
|
* destination points, it will compute the transformation implied between them. The code is based
|
|
* directly upon section 3.4.2 of George Wolberg's "Digital Image Warping"; see pages 54-56.</p>
|
|
*
|
|
* @author Sean Owen
|
|
*/
|
|
final class PerspectiveTransform
|
|
{
|
|
private function __construct(private $a11, private $a21, private $a31, private $a12, private $a22, private $a32, private $a13, private $a23, private $a33)
|
|
{
|
|
}
|
|
|
|
public static function quadrilateralToQuadrilateral(
|
|
$x0,
|
|
$y0,
|
|
$x1,
|
|
$y1,
|
|
$x2,
|
|
$y2,
|
|
$x3,
|
|
$y3,
|
|
$x0p,
|
|
$y0p,
|
|
$x1p,
|
|
$y1p,
|
|
$x2p,
|
|
$y2p,
|
|
$x3p,
|
|
$y3p
|
|
) {
|
|
$qToS = self::quadrilateralToSquare($x0, $y0, $x1, $y1, $x2, $y2, $x3, $y3);
|
|
$sToQ = self::squareToQuadrilateral($x0p, $y0p, $x1p, $y1p, $x2p, $y2p, $x3p, $y3p);
|
|
|
|
return $sToQ->times($qToS);
|
|
}
|
|
|
|
public static function quadrilateralToSquare(
|
|
$x0,
|
|
$y0,
|
|
$x1,
|
|
$y1,
|
|
$x2,
|
|
$y2,
|
|
$x3,
|
|
$y3
|
|
) {
|
|
// Here, the adjoint serves as the inverse:
|
|
return self::squareToQuadrilateral($x0, $y0, $x1, $y1, $x2, $y2, $x3, $y3)->buildAdjoint();
|
|
}
|
|
|
|
public function buildAdjoint(): \Zxing\Common\PerspectiveTransform
|
|
{
|
|
// Adjoint is the transpose of the cofactor matrix:
|
|
return new PerspectiveTransform(
|
|
$this->a22 * $this->a33 - $this->a23 * $this->a32,
|
|
$this->a23 * $this->a31 - $this->a21 * $this->a33,
|
|
$this->a21 * $this->a32 - $this->a22 * $this->a31,
|
|
$this->a13 * $this->a32 - $this->a12 * $this->a33,
|
|
$this->a11 * $this->a33 - $this->a13 * $this->a31,
|
|
$this->a12 * $this->a31 - $this->a11 * $this->a32,
|
|
$this->a12 * $this->a23 - $this->a13 * $this->a22,
|
|
$this->a13 * $this->a21 - $this->a11 * $this->a23,
|
|
$this->a11 * $this->a22 - $this->a12 * $this->a21
|
|
);
|
|
}
|
|
|
|
public static function squareToQuadrilateral(
|
|
$x0,
|
|
$y0,
|
|
$x1,
|
|
$y1,
|
|
$x2,
|
|
$y2,
|
|
$x3,
|
|
$y3
|
|
): \Zxing\Common\PerspectiveTransform {
|
|
$dx3 = $x0 - $x1 + $x2 - $x3;
|
|
$dy3 = $y0 - $y1 + $y2 - $y3;
|
|
if ($dx3 == 0.0 && $dy3 == 0.0) {
|
|
// Affine
|
|
return new PerspectiveTransform(
|
|
$x1 - $x0,
|
|
$x2 - $x1,
|
|
$x0,
|
|
$y1 - $y0,
|
|
$y2 - $y1,
|
|
$y0,
|
|
0.0,
|
|
0.0,
|
|
1.0
|
|
);
|
|
} else {
|
|
$dx1 = $x1 - $x2;
|
|
$dx2 = $x3 - $x2;
|
|
$dy1 = $y1 - $y2;
|
|
$dy2 = $y3 - $y2;
|
|
$denominator = $dx1 * $dy2 - $dx2 * $dy1;
|
|
$a13 = ($dx3 * $dy2 - $dx2 * $dy3) / $denominator;
|
|
$a23 = ($dx1 * $dy3 - $dx3 * $dy1) / $denominator;
|
|
|
|
return new PerspectiveTransform(
|
|
$x1 - $x0 + $a13 * $x1,
|
|
$x3 - $x0 + $a23 * $x3,
|
|
$x0,
|
|
$y1 - $y0 + $a13 * $y1,
|
|
$y3 - $y0 + $a23 * $y3,
|
|
$y0,
|
|
$a13,
|
|
$a23,
|
|
1.0
|
|
);
|
|
}
|
|
}
|
|
|
|
public function times($other): \Zxing\Common\PerspectiveTransform
|
|
{
|
|
return new PerspectiveTransform(
|
|
$this->a11 * $other->a11 + $this->a21 * $other->a12 + $this->a31 * $other->a13,
|
|
$this->a11 * $other->a21 + $this->a21 * $other->a22 + $this->a31 * $other->a23,
|
|
$this->a11 * $other->a31 + $this->a21 * $other->a32 + $this->a31 * $other->a33,
|
|
$this->a12 * $other->a11 + $this->a22 * $other->a12 + $this->a32 * $other->a13,
|
|
$this->a12 * $other->a21 + $this->a22 * $other->a22 + $this->a32 * $other->a23,
|
|
$this->a12 * $other->a31 + $this->a22 * $other->a32 + $this->a32 * $other->a33,
|
|
$this->a13 * $other->a11 + $this->a23 * $other->a12 + $this->a33 * $other->a13,
|
|
$this->a13 * $other->a21 + $this->a23 * $other->a22 + $this->a33 * $other->a23,
|
|
$this->a13 * $other->a31 + $this->a23 * $other->a32 + $this->a33 * $other->a33
|
|
);
|
|
}
|
|
|
|
public function transformPoints(&$points, &$yValues = 0): void
|
|
{
|
|
if ($yValues) {
|
|
$this->transformPoints_($points, $yValues);
|
|
|
|
return;
|
|
}
|
|
$max = is_countable($points) ? count($points) : 0;
|
|
$a11 = $this->a11;
|
|
$a12 = $this->a12;
|
|
$a13 = $this->a13;
|
|
$a21 = $this->a21;
|
|
$a22 = $this->a22;
|
|
$a23 = $this->a23;
|
|
$a31 = $this->a31;
|
|
$a32 = $this->a32;
|
|
$a33 = $this->a33;
|
|
for ($i = 0; $i < $max; $i += 2) {
|
|
$x = $points[$i];
|
|
$y = $points[$i + 1];
|
|
$denominator = $a13 * $x + $a23 * $y + $a33;
|
|
$points[$i] = ($a11 * $x + $a21 * $y + $a31) / $denominator;
|
|
$points[$i + 1] = ($a12 * $x + $a22 * $y + $a32) / $denominator;
|
|
}
|
|
}
|
|
|
|
public function transformPoints_(&$xValues, &$yValues): void
|
|
{
|
|
$n = is_countable($xValues) ? count($xValues) : 0;
|
|
for ($i = 0; $i < $n; $i++) {
|
|
$x = $xValues[$i];
|
|
$y = $yValues[$i];
|
|
$denominator = $this->a13 * $x + $this->a23 * $y + $this->a33;
|
|
$xValues[$i] = ($this->a11 * $x + $this->a21 * $y + $this->a31) / $denominator;
|
|
$yValues[$i] = ($this->a12 * $x + $this->a22 * $y + $this->a32) / $denominator;
|
|
}
|
|
}
|
|
}
|